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We study the bit-complexity intrinsic to solving the initial-value

and (several types of) boundary-value problems for linear evolu-

tionary systems of partial differential equations (PDEs), based on

the Computable Analysis approach. We compute classical solutions

to such problems approximately up to guaranteed precision 1/2n ,

so that n corresponds to the number of reliable bits of the output;

algorithmic cost is measured with respect to n.
Computational Complexity Theory allows us to prove in a rig-

orous sense that PDEs with constant coefficients are algorithmi-

cally ‘easier’ than general ones. Indeed, solutions to the latter are

shown (under natural assumptions) computable using a polyno-

mial number of memory bits, and we prove that the complexity

class PSPACE is in general optimal; while the case of constant

coefficients (with periodic boundary conditions) can be solved in

#P—also essentially optimally so: the Heat Equation ‘requires’ #P1.

Our assumptions include max-norm convergence of related dif-

ference schemes, which leads to various smoothness hypotheses

depending on the particular example PDE. A major tool for our effi-

cient algorithms is implicit powering/repeated squaring of exponen-
tial-sized matrices (representing difference schemes) for the general

case of finitely continuously differentiable initial and coefficient

functions, given that they provide existence of classical solutions.
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Many partial differential equations with periodic boundary condi-

tions, including the Heat and the Wave Equations, admit difference

schemes that are (tensor products of constantly many) circulant

matrices of constant ‘modular’ bandwidth; and for these we show

exponential-sized matrix powering, as well as the PDE solution,

computable in #P. This is achieved by considering a multivariate

polynomial naturally associated to the difference scheme matrix

and calculating individual coefficients of its powers using Cauchy’s

Differentiation Theorem, which may be of independent interest.

Exponentially powering modular two-band circulant matrices is es-

tablished even feasible in P; and under additional conditions, also

the solution to certain linear PDEs becomes polynomial time com-

putable.

 2022 Published by Elsevier Inc.
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1. Introduction and summary

Computable Analysis [62] provides a framework for rigorous computability and complexity in-
vestigations of computational problems over real numbers and functions by approximation up to
guaranteed absolute error 1/2n [4,34,63,7,26]. This has been applied to ordinary [5,27,31] and partial
[58,57,61] differential equations. It allows to prove asymptotic optimality of numerical algorithms, for
example by relating the intrinsic computational bit-cost of a problem to a classical discrete complex-
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ity class [22,30,3,1]. Note that already stating (not to mention proving) such a relation requires great
care: Central notions in Computational Complexity, such as polynomial-time reduction or complete-
ness, pertain to extensional (i.e. functional) problems with discrete input and output; while processing
continuous data by means of discretization is inherently non-extensional: see [42] and Subsection 2.2
below.

The present work considers general classes of systems of linear evolutionary partial differential
equations (PDEs). In order to solve some system of ordinary differential equations (ODEs) ∂tu =
Ef (u, t), common numerical approaches such as Euler’s Method and its refinements discretize time
t ∈ [0;1] into steps τ ≪ 1: From the fixed initial value u(0)= u0 at t = 0 they iteratively proceed to
approximations u(τ ), u(2τ ), . . . , u(M · τ ). In order for the last one to approximate u(1) up to error
1/2n , the number M = 1/τ ∈ N of steps is generally exponential in the number n of reliable bits of
output approximation (Remark 10); and the problem thus seen to belong to the discrete complexity
class EXPTIME.1 Closer inspection improves that to PSPACE [34, §7.2], which has been proven to be
the best possible in general [22]. Bit complexity is measured w.r.t. the output precision parameter n.

Evolutionary PDEs generalize ODEs: by replacing the right-hand side function Ef = Ef (u, t) with a
differential operator, commonly involving spatial derivatives. The mathematical theory of PDEs is con-
siderably more involved than that of ODEs [12], in particular, when it comes to existence, uniqueness,
and continuous dependence of solutions (=well-posedness in the sense of Hadamard). Recall that one
of the Millennium Prize Problem asks such questions for the Navier-Stokes Equation. Computability
investigations of PDEs have challenged the Church-Turing Hypothesis [53,64,61].

The present work considers linear evolutionary PDEs with initial conditions:
{
ut =

∑
| E | B E (Ex) · ∂

Eu, 0 ≤ t ≤ 1, Ex ∈�,

u |t=0= ϕ(Ex), Ex ∈�,
(1)

and, possibly, boundary conditions to guarantee uniqueness

Lu(t, Ex) |∂�= 0, (t, Ex) ∈ [0,1] × ∂�, (2)

where � = [0,1]d is the unit cube (for technical simplicity); ∂� is its boundary; the solution
u = (u1, . . . ,ue) = u(t, Ex) is an unknown function on � with values in Rd; L in the boundary con-
dition is a linear differential operator of order strictly less than the order of the differential operator∑

| E | B E (Ex) · ∂
Eu.

The coefficients of the differential operator are d′ × d′ matrices B E that may depend on Ex, but
not on t (autonomous case); E = ( j1, . . . , jd) denotes a multi-index of order | E | = j1 + j2 + . . .+ jd ,

∂ E = ∂
j1
1 · · · ∂

jd
d denotes the corresponding differential operator, where ∂

jk
k = ∂ jk

∂x
jk
k

; and ϕ(Ex) is the

initial condition. Note that the equations (1) are linear in the derivatives, but the matrix coefficients
B j can depend on Ex non-linearly.

Example 1. An important and rich class of PDEs of the form (1) are the first-order systems

ut =
∑d

j=1
B j(Ex) · ∂x ju. (3)

In particular, such systems are called symmetric hyperbolic, if B j(Ex) = B∗
j (Ex), j = 0,1, . . . ,d. This

class includes the linear acoustics, elasticity and Maxwell equations [58].

Also the (second-order) Wave Equation

utt = a2
∑d

j=1
∂2x j

u (4)

and many others can be reduced to such a system by introducing extra unknown functions ([14]; see
also [12, 4.6.3.a] for a reduction of higher-order systems to first-order systems (3)).

1 For notational convenience we use the terminology from discrete complexity classes also for the real case. Formal Defini-

tions of the latter are collected in Section 2.

3
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The Heat Equation

ut = a2
∑d

j=1
∂2x j

u (5)

is not of the form (3), but still of the form (1). Periodic boundary conditions on the unit cube are

captured by

Lu(t, x1, . . . , x j−1,0, x j+1, . . . , xd) := u(t, x1, . . . , x j−1,0, x j+1, . . . , xd)−

u(t, x1, . . . , x j−1,1, x j+1, . . . , xd) (6)

for first-order systems, and include similar conditions on spatial derivatives up to ℓ − 1 order for

ℓ-order systems.

Under suitable hypotheses, Euler’s method generalizes from ODEs to evolutionary PDEs (1): by dis-
cretizing now both physical time and space, the latter with some grid of sufficiently (=exponentially in

n) small width h ≪ 1. This turns the initial condition ϕ into a vector of exponentially large dimension

O(1/h). The right-hand side linear operator A may be approximated by a matrix A, often referred to

as difference scheme, see Definition 6. And if the evolution equation is autonomous, said matrix does

not depend on time. In this case repeated time-stepping u(t) 7→ u(t + τ ) = A · u(t) amounts to M-

fold repeated multiplication by A, i.e., to (exponential) matrix powering AM , where M ∼= 1/τ is also
exponential in n.

So all three, the discretized initial condition u(0) = ϕ and the matrix A and the resulting ap-

proximation to u(1), have dimension K = O(1/h) exponential in n: when considered as input and

output, they thus information-theoretically leave no chance for sub-exponential computational cost.

More interesting is therefore the following question:

Question 2. Fix polynomial-time computable initial condition, fix polynomial-time computable matrix co-
efficients B j in the right-hand side of PDE (1), and similarly for boundary condition L. Now consider only

(t, Ex) ∈ [0;1] ×� as input: What is the bit-cost (measured w.r.t. the parameter n) of approximating the solu-
tion u(t, Ex) at time t and point Ex up to absolute error 1/2n?

Thus, non-uniformly fixing all data of exponential ‘size’ (formally: from spaces of exponential

entropy [37,63,29]) and restricting to polynomial ‘size’ inputs (t, Ex) ∈ [0;1] ×� avoids information-

theoretic exponential lower complexity bounds.

Compact domains ensure that one can restrict to complexity considerations in terms of one pa-

rameter n [62, Theorem 7.2.7] and does not need to resort to second-order complexity [23]; see also,

e.g. [24,52,28] for parameterized complexity applied to differential equations. We use n as parame-

ter for producing approximations up to error bound 1/2n , not 1/n, following the conventions of Real

Complexity Theory [34, Definition 2.7]; see also Remark 10 below.

Poisson’s elliptic (i.e. non-evolutionary) PDE characterizes #P1 [30]; cmp. Fact 11c). Computation

on grids of size O(N) incurs O(logN) parallel runtime [49]. In our terminology of grid width h ∼ 1/2n

for guaranteed output approximation error 1/2n , this means N =O(1/hd) and parallel runtime O(nd).
That would amount to complexity class PAR = PSPACE, were it not for the superpolynomial number

O(N/ logN)=O(2nd/nd) of processors.
In [38,56] we have proved the solutions to be polynomial-time computable if the initial func-

tions and matrix coefficients are polynomial-time computable and analytic (an effective version of

the Cauchy-Kovalevskaya theorem) and implemented the corresponding algorithms in the Exact Real

Computation framework [51]. This extends results for ODEs with polynomial [5,43] and analytic right-
hand sides [27,31]. In the present paper we study the case of classical solutions when the initial data

are not analytic.

The main result of the present paper, Theorem 4, rigorously and in the sense of Question 2 es-

tablishes solutions to a large class of linear first-order evolutionary PDEs computable in PSPACE, and

4
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optimally so; and it improves the latter to #P for the case of constant matrix coefficients with peri-
odic boundary conditions. The latter applies, in particular, to the Heat Equation, where we show #P1

as necessary.
This paper is essentially based on the conference proceedings [38] and provides more detailed

proofs of the results sketched there.

1.1. Main results and overview

The complexity considerations in this work refer to (real counterparts, formalized in Section 2, of)

the classical hierarchy commonly conjectured proper:

NC ⊆ P ⊆ NP ⊆ P#P ⊆ PSPACE = PAR ⊆ EXP . (7)

The following hypotheses are very natural and hold for many PDEs including many of the ones men-
tioned in Example 1, see Example 31 for more detail. For the notation of (iii) see Subsection 1.2;
‖ϕ‖C l(�̄) = sup

Ex∈�̄

∑
| E |≤l

|∂ Eϕ(Ex)|.

Hypotheses 3.

(i) The problem (1) is well-posed (Hadamard) in that the classical solution u(t, Ex) to (1) exists, is

unique and depends continuously on the initial data in the following sense:

ϕ(Ex) ∈ C
l(�̄), u(t, Ex) ∈ C

2([0,1] × �̄), ‖u‖C2([0,1]×�̄) ≤ C0‖ϕ‖C l(�), (8)

for some fixed C0 , l ≥ 2.
(ii) The initial functions ϕ(Ex) and matrix coefficients Bj(Ex) as well as their partial derivatives up to

order l are polynomial time computable.

(iii) The system (1) admits a difference scheme Ah(n) (see (9) below) which is polynomial time com-

putable, and its solution u(n) converges to the solution u of (1) w.r.t. the maximum norm on the

uniform grid Gh(n) with the step h = h(n):

max
x∈Gh(n)

∣∣u|Gh(n) − u(n)
∣∣< C · h(n), C does not depend on n.

Note that technically a difference scheme is a family Ah(n) of matrices of dimension growing
exponentially in n → ∞ such as to approximate the operator A with increasing precision; the ap-
proximating solution u(n) is a sequence of vectors of dimension growing exponentially in n. See
Definition 14 of Subsection 2.2 for adjustment of the complexity classes to this case.

The main results of the present paper are collected in the following two theorems.

Theorem 4 (Complexity of linear evolutionary PDEs).

a) The solution u of (1) under Hypotheses 3 is computable in PSPACE.
b) And PSPACE is optimal in general:

There exists a polynomial-time computable Lipschitz-continuous functions b : [0;1]×�→ [0;1] and v0 :

�→ [0;1] satisfying periodic boundary conditions b(t,0)≡ b(t,1) and bx(t,0)≡ bx(t,1) and v0(0)=
v0(1) and v ′

0(0) = v ′
0(1) such that the solution v : [0;1] × � → [0;1] of the linear PDE initial value

problem

vt(t, x) = b(t, x) · vx(t, x), v(0, x)= v0(x)

with periodic boundary condition v(t,0) ≡ v(t,1) and vx(t,0) ≡ vx(t,1) exists but is not polynomial-
time computable unless P = PSPACE.

5



ARTICLE IN PRESS
JID:YJCOM AID:101727 /FLA [m1G; v1.331] P.6 (1-32)

I. Koswara, G. Pogudin, S. Selivanova et al. Journal of Complexity ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

c) If, in addition to the hypothesis from (a), the difference scheme Ah from (iii) is a sum of tensor products
of circulant block matrices of constant modular bandwidth (Definition 21), the solution (t, Ex) 7→ u(t, Ex) of
(1) is computable in #P.

d) The solution u of (3) is even polynomial time computable if the matrices B j are constant and mutually
commute for j = 0,1, . . .d.

e) Item (c) is essentially optimal in general:
For the Heat Equation (5)with periodic boundary conditions (6) there exists a polynomial time computable
initial condition ϕ such that the solution u is classical but cannot be computed in polynomial time unless
FP1 = #P1 .

‘Essentially’ optimal in (e) refers to the gap between #P1 and #P in (c); this gap is discussed
before Fact 11. Item b) harnesses a particular structure common to difference schemes, formalized in
Definition 21 below.

Remark 5. Intuitively, for PDE systems with constant matrices, the locality of the grid discretization of
the differential operator yields a difference scheme Ah(n) with constant modular bandwidth; and peri-
odic boundary conditions yield a circulant structure. Higher-dimensional Euclidean domains translate
to tensor products of such (families of) matrices; see Subsection 3.7.

The following table summarizes the current achievements on bit-complexity of linear PDE systems.

Type of PDE/Functional

Class

Poisson problem for the Laplace

equation: Elliptic

Linear Evolutionary Systems: include

Hyperbolic and Parabolic

Analytic P ([38]; [56] uniform version)

Ck , k ≥ 1 (well posed) #P; #P1-‘hard’ [30] Present paper:

• PSPACE (general case)

• #P (periodic w/const. coeff.)

• #P1-‘hard’ (Heat Equation)

• P for constant mutually commuting ma-

trix coefficients

Subsection 1.2 collects notational conventions and some preliminaries. Section 2 formalizes com-
putational bit-complexity theory of real vectors and matrices of exponential dimension, after recalling
the theory [32] for constant dimension. Subsection 3.1 presents the main techniques for proving
Theorem 4 a), c), including powering matrices of exponentially growing dimensions (representing
difference schemes) to exponential powers. Section 4 is devoted to the proof of Theorems 4, respec-
tively, while Section 5 shows some examples of applications (including the conditions on smoothness,
that need to be imposed for particular cases), as well as gives more insight into the tools described
in Section 3. We conclude in Section 6 with a summary and some open questions.

1.2. Notation

We use n ∈ N to parametrize the absolute output approximation error bound 1/2n; d ∈ N is
the dimension of the torus � = [0;1)d mod E1 as compact spatial domain of the partial differential
equation under consideration and e ∈ N denotes the dimension of the solution function vector u.

Definition 6 (Difference schemes).

a) Consider, for any positive integer N , the uniform rectangular grid GN on � defined by the points
(
i1 − 1

2

2N
,
i2 − 1

2

2N
, . . . ,

im − 1
2

2N

)

6
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where 1 ≤ i1, i2, . . . , im ≤ 2N . Let h = 1/2N be the corresponding spatial grid step and τ be a

time step. Denote GτN = GN × {lτ }Ml=1 , where M is the number of time steps. The choice of steps
h and τ , depending on the output precision parameter n, is specified below in Subsection 4.1. We

consider the following grid norm: |g(h)| = maxx∈GN |g(h)(x)|.
b) For a linear differential operator A, the matrix Ah (with the grid step h = h(n)) defines the cor-

responding difference scheme

u(h,(l+1)τ ) = Ahu
(h,lτ ), u(h,0) = ϕ(h) (9)

under consideration. Its entries are denoted (A(h))I, J , 1 ≤ I, J ≤ K . Here K ∼ 2O(n) is the di-

mension of the vectors u(h,mτ ) approximating the solution u(mτ , Ex) at time mτ ≤ 1, i.e., for

1 ≤ m ≤ M := 1/τ ∼ 2n . τ ,h ∼ 1/2n denote the temporal and spatial grid widths, respectively.
Generally speaking, capital letters denote quantities (ranging up to) exponential in n.

c) The solution u(h) of the difference scheme (9) converges to the solution u of (1) if there is a

constant C not depending on h and τ such that

∣∣u|Gτh − u(h)
∣∣≤ Chp . (10)

Due to the Lax Convergence Theorem, a difference scheme (9) converges in the sense of (10) to
the solution of the PDEs (1) if and only if it is approximating and stable; see e.g. [60]. The latter means
that the matrix Ah has bounded powers, see Definition 7 b) below.

Definition 7 (Matrices). Fix a (not necessarily commutative) ring R.

a) If R comes with norm | · |, we equip vectors over R with the induced maximum norm, and

matrices with the induced operator norm:

‖u‖ = max j |u j|, ‖A‖ = max
{
‖A · u‖/‖u‖

}
.

b) A square matrix A with entries AI, J (0 ≤ I, J < K ) is said to have bounded powers if its powers
are uniformly bounded, i.e., iff there exists some C ∈ N such that ‖AM‖ ≤ C holds for all M ∈ N .
Similarly for a family Ak of square matrices of possibly varying format, k ∈ N: Here ‖AM

k ‖ must
be bounded independently of both M ∈ N and of k ∈ N .

c) Let RN×N
D denote the vector space of N × N matrices of modular bandwidth < D:

A ∈ R
N×N
D ⇔ |I − J | mod N ≥ D ⇒ AI, J = 0.

Modular bandwidth slightly relaxes traditional bandwidth in allowing ‘off-diagonals’ to wrap
around, as in circulant matrices.

The (one-)norm of an integer multi-index E = ( j1, . . . , jL) ∈ ZL is | E | = j1 + · · · + jL . We write
“ E ≥ E0” to indicate non-negative (i.e. natural number) multi-indices. D = max

{
| E | : B E 6= 0

}
denotes

the order of the PDE (1).

A main tool in our algorithms translates circulant matrix powering to polynomial powering. Indeed,
the above notions have immediate counterparts:

Definition 8 (Polynomials). Fix a (not necessarily commutative) ring R.

a) A polynomial in L commuting variables of componentwise degree less than ED ∈ N L has the form

P ( EX) = P (X1, . . . , XL) =
∑

E0<≤ED
p E

EX E =
∑

E≥E0,| E |< ED
p E ·

∏L

ℓ=1
X jℓ
ℓ .

Write R ED [X1, . . . , XL] =R ED [ EX] for the vector space of such polynomials.

7
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b) An L-variate Laurent polynomial of componentwise degree < ED has the form

P ( EX) = P (X1, . . . , XL) =
∑

−ED< E< ED
p E

EX E ,

that is, including negative powers of the variables. Write

R ED [X1, X
−1
1 , . . . , XL, X

−1
L ] = R ED [ EX, EX−1]

for the vector space of such Laurent polynomials; and P
[
EX E
]
:= p E for the coefficient to EX E in P ,

E ∈ ZL .
c) Suppose R is equipped with a norm | · |. Consider the ring R[ EX, EX−1] of all (Laurent) polyno-

mials, equipped with the induced norm ‖P‖ :=
∑

| E | |p E |. A (Laurent) polynomial P has bounded

powers iff ‖PM‖ is bounded independently of M ∈ N .

Similarly for a family Pk of polynomials of possibly varying number of variables, k ∈ N: Here
‖PM

k ‖ must be bounded independently of both M ∈ N and of k ∈ N .

Multivariate degree is understood componentwise and w.r.t. strict inequality “<” (not = nor ≤).

For example X2 · Y 3 + X3 · Y 2 has componentwise degree < ED = (4,4), but not < (3,4) nor < (4,3).
An L-variate Laurent polynomial P of componentwise degree < ED can be converted to an ordinary

polynomial by multiplying P with XD1
1 · · · XDL

L .

In the sequel, exponential growth is to be understood as bounded by 2p(k) , k → ∞, for some

polynomial p.

2. Real complexity theory

In [34], major classical complexity classes have been adapted from the discrete case to the setting

of real numbers and (continuous) real functions. There the integer parameter n governing the output
approximation error 1/2n replaces the role of the binary input length.

2.1. Complexity of reals/vectors/polynomials in fixed dimension

Let us recall the definitions of polynomial/exponential time/space computability of real numbers,
(fixed-dimensional) real vectors, sequences of real numbers, and partial real functions [34].

Definition 9.

a) Computing a real number r ∈ R means to output, given n ∈ N , some numerators an ∈ Z in binary
with |r −an/2α(n)| ≤ 1/2n for some polynomial α ∈ N[N]. Such a computation runs in polynomial
time (P) if said an is output within a number of steps bounded by a polynomial in n. It runs in
exponential time (EXPTIME) if the number of steps is bounded exponentially in n. The compu-
tation runs in polynomial space (PSPACE) if the amount of memory is bounded polynomially in

n.
b) Computing a (finite-dimensional) real vector (in P, EXPTIME, PSPACE) means to compute each

of its entries separately (in P, EXPTIME, PSPACE).

c) Computing a sequence r̄ = (rk) ∈ R of real numbers means to output, given n and k, some an,k ∈

Z in binary with |rk − an,k/2
α(n,k)| ≤ 1/2n for some bivariate polynomial α ∈ N[N, K ]. Such a

computation runs in polynomial time (P) if said an,k is output within a number of steps bounded

by a polynomial in n+k. Similarly for exponential time (EXPTIME) and polynomial space (PSPACE).

d) Computing a partial real function f :⊆ R → R (w.r.t. some recursive integer functions α, β,γ ∈
NN ) means, given n ∈ N and any numerator a ∈ Z in binary with |x − a/2γ (n)| ≤ 1/2β(n) for

some x ∈ dom( f ), to output some b = bn(a) ∈ Z in binary with | f (x) − bn/2α(n)| ≤ 1/2n . The

computation may behave arbitrarily on inputs a that do not satisfy the hypothesis.

8
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e) A computation according to (d) runs in polynomial time (P) if α, β,γ are polynomials and if said
bn is output within a number of steps bounded by a polynomial in n. Similarly for polynomial
space (PSPACE).

Note that the bivariate polynomial α(n,k) in (c) can equivalently be replaced by a univariate poly-
nomial in the sum n + k. Definition 9d) is equivalent to general computability [62, §4.2+§4.3], and
(e) to other common complexity-theoretic notions [34, §7.2.1]: Either one requires a P/PSPACE com-
putable function to have a polynomial modulus of continuity [34, Theorem 2.19]. Moreover for a
sequence rk of integers, classical P/PSPACE/EXPTIME computability is equivalent to (c).

Also record that a polynomial-time computable real sequence rk according to (9c) can grow in
magnitude at most exponentially (in k). Memory-bounded computation here is understood to charge
for all three, input and working and output tape; hence sequences of reals computable in PSPACE

also satisfy exponential bounds of growth.
In the following Remark we collect reasons to use error bound 1/2n instead of another natural

option 1/n.

Remark 10. In addition to following the conventions of Real Complexity Theory [34, Definition 2.7],
we prefer error bound 1/2n (as opposed to 1/n) for four reasons:

a) It corresponds to measuring computational cost of discrete problems, such as of integer factoriza-
tion, in dependence of the binary (as opposed to unary) length n.

b) It reflects that (for instance Chudnovsky’s or Borwein’s) algorithms can approximate π in time
polynomial in n up to error 1/2n (while error bound 1/n is trivial to achieve).

c) It gives rise to the aforementioned and subsequent and many more [34] numerical characteriza-
tions of discrete complexity classes.

d) The first-order theory of the two-sorted structure

(Z,0,1,+,>) ∪ (R,0,1,+,×,>)

with ‘error embedding’ ı : Z ∋ n 7→ 2−n ∈ R (capturing Exact Real Computation) is decidable, while
that with N+ ∋ n 7→ 1/n ∈ R is not [51, Theorem 4.4].

Recall that the discrete complexity class #P consists of all total functions ψ : {0,1}∗ → N such
that some non-deterministic polynomial-time Turing machine on input Ex ∈ {0,1}∗ has precisely ψ(Ex)
accepting computations [32,2]. P1 , NP1 , #P1 and denote the so-called unary variants of P, NP, and
#P: classes of problems whose inputs are restricted to unary (aka tally) strings {1}∗ , as opposed to
binary {0,1}∗ . It is easy to see that P1 = NP1 ⇔ EXPTIME = NEXPTIME; and consult for instance [15]
regarding further relations between unary and binary complexity classes. #P1 and #P are known to
‘characterize’ in/definite Riemann Integration [34, Theorem 5.32+5.33] in the following non-uniform
sense:

Fact 11.

a) For every fixed polynomial-time computable (and hence continuous) function h : [0;1]d → [−1;1], the
real number

∫
[0;1]d h(Ex)dEx is computable in P, provided that FP1 = #P1 .

b) There exists a polynomial-time computable function h : [0;1] → [−1;1] (and even of class C∞
0 [0;1],

i.e. infinitely often differentiable, vanishing with all derivatives at 0 and at 1) such that the real number∫ 1
0 h(x)dx is not computable in P unless FP1 = #P1 .

c) For every polynomial-time computable (and hence continuous) function h : [0;1]d → [−1;1], the func-
tion ∫

h : [0;1]d ∋ Ey 7→

∫

[E0;Ey]
h(x)dEx ∈ [−1;1] (11)

is computable in P, provided that FP = #P.

9
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d) There exists a polynomial-time computable function h : [0;1] → [−1;1] (and even of class C∞
0 [0;1]),

such that Equation (11) with d = 1 is not computable in P unless FP = #P.
e) For every polynomial time computable analytic function h : [0;1]d → R, Equation (11) is computable in

P [34, bottom of page 208].
f) For every Lipschitz-continuous polynomial-time computable function f : [0;1] × [−1;1] → [−1;1], the

unique solution u : [0;1] → [−1;1] to the non-linear ordinary differential equation

u̇(t)= f
(
t,u(t)

)
, u(0)= 0 (12)

is computable in PSPACE [34, §7.2].
g) Item (f) is optimal in that there exists a polynomial-time computable f : [0;1] × [−1;1] → R, of class

C∞ in the first ‘temporal’ argument and Lipschitz-continuous in the second ‘spatial’ argument, such that
the solution u : [0;1] → [−1;1] to Equation (12) exists but is not polynomial-time computable unless P

= PSPACE [22, Theorem 3.2].
g ′) Item (g) has been strengthened from Lipschitz f to C1 in the spatial argument [25]. Moreover its first

spatial derivative ∂x f is in turn polynomial-time computable (personal communication 2022); and the
proof can be adapted to ensure f (t,−1)≡ 0 ≡ f (t,+1) and fx(t,−1)≡ 0 ≡ fx(t,+1) for all t ∈ [0;1].
On the other hand, the single value u(1) ∈ [−1;1] is only PSPACE1-‘hard’ [25, §5.1].

Of course Items (b) and (d) and (g) hold a fortiori also in higher dimensions.

Remark 12. Note that Items (b) and (d) are of the form

XYZ is not computable in polynomial time unless FP = #P

and similarly for (g). We shall abbreviate such statements as XYZ being “#P-hard”; similarly for #P1

and PSPACE: although “hardness” in Computational Complexity is defined via polynomial-time reduc-

tion between discrete decision problems and not applicable to the continuous problems considered

here. Refer to [6] for the definition and survey of computable reducibility between continuous prob-

lems, and to [23] for its polynomial-time strengthening.

Also Items (a), (c) in Fact 11 are non-uniform and do not refer to “computability in #P” or #P1 ,

as introduced in Definition 13. So if towards the Millenium problem someone manages to prove

FP 6= #P, then a statement according to Remark 12 will become empty: ex falso quodlibet. Fact 11f) on
the other hand does remain meaningful even in case P 6= PSPACE, because we do have defined “computability
in PSPACE”. A reasonable complexity class of real numbers/sequences/functions should arguably be

closed under arithmetic operations such as subtraction, multiplication and (bounded) division. How-

ever which arithmetic integer operations #P is closed under remains an open question. For instance

GapP has been introduced as the closure of #P under subtraction [16]. We therefore follow and gen-

eralize [34, p. 184] to define real counterparts to #P via oracles:

Definition 13. Call a real number computable in #P (‘polynomially countable’) if it is computable in

P#P , that is, in polynomial-time (Definition 9a, but) with oracle access to #P.

Similarly for finite-dimensional vectors (Definition 9b), sequences (Definition 9c), and partial real

functions (Definition 9d)

Fact 11(a)+(c) can now be strengthened to the statements that in/definite Riemann integration

is in #P/#P1 , following the proofs of [34, Theorem 5.32+Theorem 5.33]. Note that we could also

define computability in PSPACE equivalently as polynomial time computability with PSPACE oracle.

As in the discrete case, real polynomial-time computability implies computability in #P, which in turn

implies computability in PSPACE. In particular also any real sequence rk computable in #P has |rk|
growing at most exponentially in k.

10
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2.2. Complexity of reals/vectors/polynomials in growing dimension

In order to guarantee absolute error bound 1/2n , even within the class of smooth real functions
in 1D, requires discretization on a grid of exponential size: for entropy reasons. Exponential running
time thus can only be beaten when taking each such information-theoretically ‘large’ argument as
fixed polynomial-time computable; recall the above discussion around Question 2. On the other hand
the discretizations as real vectors, and the difference schemes operating on the latter, cannot be fixed:
they do and must depend on n, exponentially.

To formalize the latter in Definition 14 below, we consider a compromise ‘semi-uniform’ setting:
neither fixing the real vector/matrix (and its dimension), nor accepting it as input, but rather fixing a
sequence of real vectors Evk/matrices Ak/polynomials Pk of growing dimensions/degrees Dk . Since these
Dk tend to grow exponentially fast, we only require that any desired entry/coefficient be computable
in time polynomial

• in the output precision parameter n (=the length of n in unary) and
• in the sequence index k (=its length in unary) and
• in the binary length of indices I, J of the entry (Ak)I, J , or in the binary length of the index J of

the coefficient (Pk) J .

Thus non-uniquely ‘discretizing’ a polynomial-time computable function yields a polynomial-time
computable vector sequence in this sense. The complexity of computing said dimension Dk itself
must be taken into account as well. Up to a polynomial (quadratic) difference in complexity, we may
identify a D × E-dimensional matrix B = (b I, J ) with the D × E-dimensional vector B〈I, J 〉 , for the
pairing function 〈I, J 〉 = J + (I + J ) · (I + J + 1)/2.

Definition 14.

a) Computing a sequence rk = (rk, J ) J≤Dk ∈ RDk of Dk-dimensional real vectors means to output,

given n,k ∈ N (in unary) and J ≤ dim(rk)= Dk in binary, some an,k, J ∈ Z in binary with

|rk, J − an,k, J/2
α(n,k)| ≤ 1/2n

for some bivariate polynomial α ∈ N[N, K ].
Such a computation runs in polynomial time (P) if said an,k, J is output within a number of steps
bounded by a (univariate) polynomial in n + k but independently of J . Similarly for exponential
time (EXPTIME) and polynomial space (PSPACE) and polynomial countability (#P).

b) More generally, computing a sequence fk :⊆ Rd → RDk of partial vector functions (w.r.t. some

bivariate polynomials α, β,γ ∈ N[N, K ]) means, given n,k, J ∈ N and any numerator Ea ∈ Zd with

||Ex− Ea/2α(n,k)|| ≤ 1/2β(n,k)

for any Ex ∈ dom(fk) and J ≤ Dk = dim fk , to output some b = bn,k, J (a) ∈ Z with

|| fk, J (Ex)− b/2γ (n,k)|| ≤ 1/2n .

Here

‖Ey‖ = max{|y1|, . . . , |yd|}

denotes the maximum norm.
Such a computation runs in polynomial time (P) if said b = bn,k, J (a) is output within a number of
steps bounded by a polynomial in n + k but independently of J and a. Similarly for exponential
time (EXPTIME) and polynomial space (PSPACE) and polynomial countability (#P).

c) A sequence (Dk) of natural numbers is computable in unary polynomial time (P1) if the mapping
{1}∗ ∋ 0

k 7→ bin(Dk) ∈ {0,1}∗ is computable in time polynomial in the input length.

11
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More generally call a double sequence EDk,ℓ ∈ ZDk of integer vectors computable in unary poly-
nomial time (P1) if the partial mapping {0,1}∗ ∋ 1

k
01

ℓ
0 bin( J ) 7→ bin(Dk,ℓ) ∈ {0,1}∗ is com-

putable in time polynomial in k + ℓ but independently of J < Dk .

An integer (vector) sequence is computable in unary polynomial time (Definition 14c) iff it is
polynomial-time computable as a real sequence in the sense of Definitions 9c) and 14a). Both an
integer and a real vector sequence computable in (unary) polynomial time can grow in magnitude at
most exponentially in k, and so can the dimension; same for real vector functions according to (14b),
and for PSPACE and #P-computable real sequences. Exponential growth of Dk > 0 is equivalent to
polynomial growth of log(Dk); and (14c) strengthens this condition, namely it implies but does not
follow from exponential growth.

Our real counterparts of P and #P and PSPACE above agree with both the conception of real
numbers as ‘streams’ of approximations [62,63] as well as with the oracle-based approach [34,23].

2.3. Some observations

Exploiting sparsity of a K × K matrix can improve the efficiency of computations, such as from
O(K 3) to O(K poly log K ) [21], but in our case with dimension K ∼= 2O(n) cannot improve from expo-
nential to polynomial time; similarly for proceeding from uniform K ×· · ·×K = Kd grids in dimension
d to adaptive ones focusing on critical regions of lower dimension [44].

Remark 15.

a) Rational numbers with denominator 2n can approximate any real number up to error 1/2n . Al-
lowing unbounded binary denominators destroys complexity bounds [62, Examples 7.2.1+7.2.3].
In Definitions 9 and 14 we permit a polynomial ‘slack’ in denominator binary length p(n).

b) Time polynomial in n suffices to output only numerators a = an,k of length polynomial in n + k
in Definition 9c; hence a sequence rk of vectors computable in polynomial time has dimension
dim(rk) and magnitude max J |rk, J | grow at most exponentially in k.

c) Common numerical difference schemes discretize the initial condition ϕ into a vector (sequence)
ϕ(h) of dimension growing exponentially with the output precision parameter n. There is no way
to input/output such ‘huge’ object entirely within polynomial time. Definition 14 therefore for-

malizes computing individual entries ϕ
(h)
J , with index J ∈ N given in binary, which thus does

remain polynomial in n. More precisely, the sequence index k enters (like the precision param-
eter n) in ‘unary’ in the time/memory bound, while the index J enters in binary; see also the
arguments to the polynomial p in Definition 14 and to ψ in Definition 13 above.

d) Recall that every computable real function is continuous [62, §4.3]; hence uniformly continu-
ous on compact domains. And every polynomial time computable real function has a polynomial
modulus of continuity [34, Theorem 2.19]. Definition 14a imposes a polynomial modulus of con-
tinuity p; and Definition 14b additionally lets that depend on the index k (in unary) of the vector
function sequence. It is no loss of generality, and notationally convenient, to use the same poly-
nomial bound for the modulus of continuity as for the denominator binary length in (a).

3. Exponential-size algorithmic algebra

In this Section we explain the main ideas of proving Theorem 4 and establish the related results
concerning linear algebra of exponential dimension and raising polynomials to exponential powers.

3.1. Techniques and proof ideas

For the difference scheme approach (9), the computational problem is equivalent to: first raise a
matrix A (or, rather, any desired one from a sequence of matrices Ah(n)) of exponential dimension K ∼

2O (n) to an exponential power M ∼ 2O (n); then multiply the intermediate result to a K -dimensional

12
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sample vector ϕ(h) of the initial condition ϕ; and finally return an approximation to any desired entry

with given index # J of the result vector
(
A
M(n)
h(n) · ϕ(h(n))

)
J up to error 1/2n , 0 ≤ J < K . Naïvely the

intermediate result matrices and vectors have exponential dimension, hence leading to complexity
class EXPTIME.

On the other hand, according to Question 2, only one entry # J of the result is required; and both
the difference-scheme matrix Ah(n) and the sampled initial vector ϕ(h(n)) do not need to be stored, but
by hypothesis any desired of its entries can be (re-)computed on-the-fly in P, whenever and however
often required: only J ∈ {0,1, . . . , K − 1} and M are part of the input, given in binary with a linear
number O(n) of bits.

The discrete counterpart to our real problem would ask for any desired entry of a polynomial time
computable Boolean matrix of exponential dimension to exponential power; and this can be solved
in PSPACE by Savitch’s Algorithm. When applying the same approach to the integer or to the present
real case, the hypothesis of A having bounded powers (Definition 7b) becomes crucial: to guarantee
that the resulting entries do not blow up, nor do they require excessive initial precision in order to
keep the rounding error propagation in check (details omitted). We thus have an improved, namely
PSPACE algorithm, and establish Theorem 4a).

Regarding Theorem 4c), Subsection 3.6 reduces the problem of (recovering any desired entry of a)
circulant matrix raised to an exponential power to that of (recovering any desired coefficient of a)
polynomial raised to such power; in a way that relates modular bandwidth to degrees. Subsection 3.4
solves the latter problem in #P by reduction to Riemann integration via Cauchy’s Differentiation The-
orem. Linear polynomials can even be raised to exponential powers in P according to Proposition 19.
Subsection 4.4 establishes Theorem 4b); and Subsections 4.2, 4.3 establish Theorem 4d), e), respec-
tively.

3.2. Exponential-size inner product is #P-“complete”

In the following Lemma we determine the complexity classes capturing the bit-cost of exponential-
size inner products of real vectors. This will be later applied to (i) vectors approximating the initial
data of the considered PDEs on a grid and, (ii) vectors representing rows of the difference scheme
matrices; see Subsection 4.1. The complexity of difference scheme matrix powering is subject of the
next subsection.

Proposition 16.

a) Given vectors u,v ∈ [−2ℓ,+2ℓ]D ⊆ RD , their inner product 〈u,v〉 ∈ [−D ·4ℓ,+D ·4ℓ] can be computed
in time polynomial in n + ℓ + D . [Indeed D instead of log D] In particular if u,v ∈ RD are fixed and
polynomial-time computable (in n), then so is their inner product 〈u,v〉.

b) Let uk = (uk, J )0≤ J<Dk and ck = (vk, J )0≤ J<Dk denote two sequences of Dk-dimensional real vectors.
Suppose that both real vector sequences are computable in #P in the sense of Definition 14a), and suppose
that the integer sequence (Dk) is computable in P1 in the sense of Definition 14c). Then the sequence of
real numbers 〈uk,vk〉 is computable in #P.

c) Let fk,gk :⊆ Rd → RDk denote sequences of vector functions computable in #P, where Dk denotes the
sequence of their joint dimensions supposed to be computable in P1 . Then also the sequence 〈fk,gk〉 =∑

J≤Dk
fk, J · gk, J of their inner products is computable in #P.

d) Items (b) and (c) are almost tight: There exist polynomial-time computable integer vector sequences sk, rk
of dimension Dk = 2poly(k) such that the integer sequence 〈sk, rk〉 is not computable in unary polynomial
time (=real P) unless FP1 = #P1 .

Recall from after Definition 14c) that the dimensions Dk may be exponential in k. Nevertheless,
Proposition 16b+c) beat the complexity class EXPTIME, since all exponential-size inputs are fixed.

Proof of Proposition 16. a) By triangle inequality,
∑

j
|u jv j − u′

jv
′
j| ≤

∑
j
|u j| · |v j − v ′

j| + |u j − u′
j| · |v

′
j|

≤ 2D · 2ℓ+1 · 2−m ≤ 2−n

13
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provided that |v j − v ′
j |, |u j −u′

j | ≤ 2−m for m ≥ n+ℓ+2+ log D . Hence it suffices to calculate the

inner product on input of component-wise dyadic approximations to u,v up to error 2−m . The
numerators a ∈ Z of these dyadic approximations a/2m are integers of binary length O(m + ℓ),
and can be processed in the claimed runtime.

b) Let ψ,φ : {0,1}∗ → N be in #P such that uk is computable in Pψ and vk is computable in Pφ .

Note that the componentwise sum uk + vk and componentwise product uk · vk are computable in

Pψ⊕φ , where

ψ ⊕ φ : {0,1}∗ ∋ 0 ◦ Ew 7→ ψ( Ew), 1 ◦ Ew 7→ φ( Ew) ∈ N

again belongs to #P.

Now according to the proof of (a) it suffices to calculate the inner product k 7→ 〈ak,bk〉 of integer

vectors ak and bk , numerators to componentwise approximations ak/2
m and bk/2

m up to error

1/2m to uk and vk for m ∼= n + ℓ+ log D ≤ poly(n + k). Note that the integer sequence 〈ak,bk〉 =

#Xk − #Y − k belongs to the complexity class FP#P since

Xk :=
{
( J ,a,b) : 0 ≤ J < Dk, (0 ≤ a< ak, J ∧ 0 ≤ b< bk, J )

∨(0 ≤ a<−ak, J ,0 ≤ b<−bk, J )
}
,

Yk :=
{
( J ,a,b) : 0 ≤ J < Dk, (0 ≤ a<−ak, J ∧ 0 ≤ b< bk, J )

∨(0 ≤ a< ak, J ,0 ≤ b<−bk, J )
}

are subsets of N3 decidable in P#P by hypothesis.
c) Similarly to (b), now pointwise.

d) Let ψ : {1}∗ → N be #P1-complete,

ψ(1k) = #
{

Ew ∈ {0,1}poly(k) : 1k
0 Ew ∈ V

}
, V ∈ P .

Define rk ≡ E1 ∈ {1}Dk and sk ∈ {0,1}Dk by s J ,k := 1 in case 1
k
0 bin( J ) ∈ V and s J ,k := 0 in case

1
k
0 bin( J ) /∈ V . Both are obviously computable in (unary) time polynomial in k; and their inner

product coincides with ψ . 2

3.3. Exponential matrix powering is PSPACE-“complete”

In the following Lemma we determine the complexity classes capturing the bit-cost of raising
exponential-size real matrices to exponential powers. This will be later applied to difference scheme
matrices of dimension O(2n), see Subsection 4.1.

Proposition 17.

a) Given matrices A,B ∈ [−2ℓ,+2ℓ]D×D ⊆ RD×D , their product C := A ·B ∈ [−D · 4ℓ,+D · 4ℓ]D×D can be
computed in time polynomial in n+ℓ+ D . In particular if A,B ∈ RD×D are polynomial-time computable,
then so is their product.

b) Let Ak = (Ak,I, J )0≤I, J<Dk denote a sequence of Dk × Dk-dimensional real matrices of bounded powers
(Definition 7), computable in PSPACE in the sense of Definition 14a). Suppose that the integer sequence
(Dk) of dimensions is computable in P1 in the sense of Definition 14c). Furthermore fix P1-computable
sequence (Kk) of natural numbers. Then the sequence of powered real matrices A

Kk
k is computable in

PSPACE.
c) Item (b) is tight: There exist polynomial-time computable 0/1 matrix sequences Ak of bounded powers of

dimension Dk = 2poly(k) such that the power matrix sequence A
Dk
k is not computable in polynomial time

(=real P) unless P = PSPACE.
The problem remains PSPACE-‘hard’ when restricting to a binary tensor product Ak = Xk ⊗Yk of matrices
Xk,Yk of constant (traditional) bandwidth each.

14
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Note that, without the hypothesis of bounded powers, matrix exponentiation can result in entries

blowing up super-exponentially and thus impossible to process in PSPACE.

Proof of Proposition 17. a) Express matrix product as D2 inner products according to Proposi-

tion 16a).

b) By hypothesis the entries of all matrix powers AK
k are uniformly bounded by 2ℓ for some ℓ ∈ N .

Then, according to the sensitivity analysis in the proof of Proposition 16a+b), the entries of a

product AL
k · AM

k can be approximated up to error 1/2n from approximations to the entries of

AL
k and AM

k up to error 1/2m each, for m = n + ℓ+ 2 + log D . Now recall powering by repeated-

squaring:

(
AK )

I, J =





((
AK/2

)2)
I, J

=
∑

L

(
AK/2

)
I,L ·

(
AK/2

)
L, J if K is even

(
AK−1 · A

)
I, J

=
∑

L

(
AK−1

)
I,L ·

(
A
)
L, J if K is odd .

(13)

As recursive algorithm, it has depth O(log K ); and since the increase of precision at each recursive

step is by an additive amount ℓ + 2 + log D , the lower levels of the recursion tree will suffice

with precision O
(
n + log(K ) · (ℓ+ 2 + log D)

)
≤ poly(n + logK + ℓ+ log D). Now recall that P1-

computability of Dk and Kk implies log(Dk), log(Kk)≤ poly(k).
Moreover recursion allows to reuse and thus save memory: Given K , I and J , the formula incurs

D sequential recursive calls to calculate AK/2
I,L and possibly AK/2

L, J ; each time storing only the

current accumulator. It is clear that each recursion level adds the memory to store the number

(already studied before) and the loop index. In other words, the recursion algorithm calculates

not the entire matrix but just one coefficient, recall Definition 14a).

This incurs many re-calculations in exponential runtime, but does yield a memory bound polyno-

mial in n+k: Recall from the proof of Proposition 16a) that each real matrix entry is stored as nu-

merator of binary length O(m+ℓ) to dyadic approximation up to error 1/2m , m ∼= n+ℓ+2+ log D ,

where D = Dk is at most exponential in k. Also the loop index L < Dk can be stored in poly(k)
bits.

c) We perform a master reduction and consider a Turing machine with polynomial space bound

poly(k), hence exponential runtime bound Kk := 2poly(k) and exponential bound Dk := 2poly(k) on

the number of configurations. Let Ak denote the adjacency matrix of the directed configuration

graph of said machine, with entry 1 at position (I, J ) if J is the successor configuration to I and 0

otherwise. Hence
(
AK
k

)
I, J contains the number of paths (computations) of length K from config-

uration I to J . Since our Turing machine is deterministic, there can be at most such computation;

in particular Ak has bounded powers. And since the runtime is at most exponential,
(
AK
k

)
I0, J0

tells whether there exists a computation at all from start configuration I0 to the (w.l.o.g. unique)

accepting end configuration J0 .
For the strengthened claim, recall that a two-counter machine with only instructions

INC1, INC2, DEC1, DEC2, JZ1, JZ2

is Turing-complete [47, Theorem Ia]. The proof furthermore reveals that such machines, although

possibly exponentially slower than a Turing machine, are polynomially equivalent with respect

to their memory consumption. Moreover also a polynomially space-bounded counter machine

can make at most exponentially steps before repeating. It thus suffices to express configuration

changes of counter (instead of Turing) machines as matrices Ak of dimension exponential in k.
Now observe that configuration changes of the first counter are captured by a tridiagonal matrix

Xk , corresponding to instructions INC1 and DEC1; similarly Yk for the second counter; and con-

figuration changes corresponding to the instruction index (i.e. JZ1 and JZ2) are captured by a

constant-size (and hence constant-bandwidth) matrix Z. So Ak := Xk ⊗
(
Yk ⊗ Z

)
suffices. 2

15
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3.4. Raising small polynomials to exponential powers

Consider the problem of raising a fixed polynomial-time computable univariate polynomial P of

‘small’ degree to an exponential M-th power, and read off the J -th coefficient P [X J ] with J ,M ∈ N

in binary as only actual input. Of course having bounded powers (Definition 8c) is again a crucial hy-

pothesis to prevent coefficient explosion and numerical instability. Note that already for the quadratic

polynomial P (X)= (1+ X + X2)/3, naïve evaluation of the ‘explicit’ formula

(
1
3 + 1

3 X + 1
3 X

2
)K

[X J ] = 3−K ·
∑

0≤µ,ν≤K
µ+2ν=M

K !

µ! · ν! · (K −µ− ν)!
(14)

involves terms like K ! of value, and the sum with a number of terms, doubly exponential in k: not at
all obvious to compute in #P.

However recall Cauchy’s Differentiation Formula for analytic functions, for notational convenience

recalled here in the univariate case:

f (z) =
∑

j

c jz
j ⇒ c j = f ( j)/ j! =

∫

∂ B(0,r)

f (z)

z j+1
dz / (2π i) (15)

for any r > 0 such that B(0, r) ⊆ dom( f ). Here B(z, r) = {u : d(u, z) < r} denotes the open ball with
center z and radius r, and ∂ is the topological boundary operator.

Applying Equation (15) to the analytic polynomial f := PM with r = 1 allows to recover each of

the exponentially (in n) many coefficients PM [X j] of PM , individually. Note that evaluating z 7→ PM(z)
is feasible via repeated squaring using O(logM) multiplications, that is polynomial in the precision n.
Turning (the analysis of) this algebraic into a numerical algorithm, note that said powering of complex

numbers (rather than of symbolic polynomial) is stable: since P by hypothesis has bounded powers

and |z| = r = 1, if follows that |PM(z)|/|z j+1| is bounded independently of M . Moreover differentiation

d

dz
PM(z) = M · PM−1(z) · P ′(z) (16)

shows that also the dependence of PM(z)/z j+1 on z under small perturbations is well-behaved: To
attain absolute output error 1/2n and for M, j, |P ′(z)| ≤ 2poly(n) , z and P (z) suffice to be known and
processed with poly(n) additional bits of precision; hence z 7→ PM(z)/z j+1 can be computed in poly-
nomial time, provided that the original coefficients of P are. Finally the path integral in Equation (15)
boils down in canonical parameterization to an ordinary definite Riemann integral, and the latter is
known computable in #P1 [34, §5.4].

These considerations straightforwardly generalize from the univariate to the multivariate setting,
provided that the number of variables is constant w.r.t. n. A little more delicate is our ‘semi-uniform’
case of sequences of polynomials Pk according to Definition 14: With coefficient indices E given in
binary (in addition to the sequence index k and output precision n in unary), the thus parameterized
Riemann integration problem climbs in complexity from #P1 to #P [34, Theorem 5.32]. Note that
the derivatives P ′

k(z) in Equation (16) grow at most with deg(Pk) ≤ 2poly(n) according to Bernstein’s
Theorem. In summary we have established the following theorem:

Theorem18. Fix a sequence Pk( EX) of L-variate polynomials of componentwise degree< ED and bounded pow-
ers. Let Kk denote a sequence of natural numbers with binary representation computable in time polynomial
(and thus of value exponentially bounded) in k.

Then each coefficient P Kk
k [ EX E ] of P Kk

k , E0 ≤ E < ED , formalized as mapping bin(1k,bin( E)
)
7→ P Kk

k

[
EX E
]
, is

computable in #P.

Note that P Kk
k has componentwise degree < ED · K k , growing at most exponentially in k. Therefore

the binary length of E is polynomial in k, which in turn is the binary length of 1k .

16
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Cauchy’s Differentiation Formula (15) does not apply to Laurent polynomials, due to possible
singularities in the unit circle. Nevertheless, Theorem 18 does extend to Laurent polynomials P ′

k: Mul-

tiplying P ′ with a suitable (say E0-th) power of EX converts to an ordinary polynomial P := EX E0 · P ′;
and simultaneously adjust the indices E 7→ E + Kk · E0 in Theorem 18.

3.5. Powering linear polynomials in P

Raising linear polynomials to exponential powers is feasible in P: Note that
(N
K

)
pKqN−K is the

coefficient of X K of the polynomial (pX + q)N .

Proposition 19. Fix polynomial-time computable q ∈ (0;1) and k ∈ N . Abbreviate p := 1 − q. Given K ≤
N ∈ N , one can approximate

(N
K

)
pKqN−K to absolute error N−k in time polynomial in logN , the binary length

of N .

To emphasize, k is constant while K ,N are given as inputs.

Proof of Proposition 19. Without loss of generality, assume p ≤ 1/2. Interpret this as a Bernoulli trial.

Let X be a random variable equal to the number of successes among n independent Bernoulli trials

with the probability of success being p. Then the probability P (X = K )=
(N
K

)
pKqN−K . The mean µ of

X is pN . Applying the multiplicative Chernoff bound [8] with ε = 1/2, we obtain

P
(
X ≤

µ

2

)
≤ e−µ

8 P

(
X ≥

3µ

2

)
≤ e− µ

12

Therefore,

P
(
|X −µ| ≥

µ

2

)
≤ 2e−µ

8 .

Suppose K /∈
(

pN
2 ,

3pN
2

)
, then |K −µ| ≥ µ

2 . Thus P (X = K )≤ P
(
|X −µ| ≥ µ

2

)
.

For large enough N , we have 2e−µ
8 = 2e− pN

8 ≤ N−k , so the algorithm will output 0 as it is within
the allowed margin of error.

Otherwise, K is in the interval
(

pN
2 ,

3pN
2

)
. Express

(N
K

)
= N!

(N−K )!K ! . The expanded Stirling’s approx-

imation [65, Equations (1) and (6)] up to sufficiently many (depending on k, and thus a constant

number of) terms yields an approximation to K 7→ K ! up to relative error

BK−k−1 ≤
2k+1B

pk+1
N−k−1

for some B = B(k) ∈ N; and evaluating this expansion takes time polynomial in log K . Similarly, we
can compute N!, (N − K )!,aK ,bN−K to the same relative error bound. Therefore

(N
K

)
aKbN−K can be

computed by multiplying the results and their inverses together, which gives the result to relative
error N−k . Since 0 ≤

(N
K

)
aKbN−K ≤ 1, our output is also of absolute error N−k . All of this can be done

in time polynomial in logN . 2

3.6. Circulant matrices as polynomials

Consider an N × N circulant matrix with parameters Ea = (a0, . . . ,aN−1):

C(Ea) =
(
aI− J mod N

)
0≤I, J<N =

∑N−1

J=0
a J · C

J
N (17)

for the ‘generator’ circulant matrix CN := C(0,1,0,0, . . . ,0) with N parameters (0,1,0,0, . . . ,0). Let

PC(Ea)(X)=
∑N−1

j=0
a j X

j (18)

17
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denote the associated polynomial to circulant matrix C(Ea). Note that C(Ea) = PC(Ea)(CN ); moreover the

entry of the matrix power C(Ea)M with indices (I, J ) is

(
C(Ea)M

)
I, J =

∑
K≡I− J mod N

PM
C(Ea)[X

K ]

in the terminology of Definition 8. The associated polynomial is a well-known concept [39].
Recall that RN×N

D denotes the vector space of N × N matrices over R of modular bandwidth < D ,
Definition 7c). Circulant such matrices correspond to Laurent polynomials with degree < D: linear
combinations of monomials X j of possibly negative exponents j between −D and +D , as formalized
in the following lemma.

Lemma 20. Fix a (not necessarily commutative) ring R of characteristic zero. Let CIRCN
D(R)⊆ R

N×N
D denote

the subspace of N × N circulant matrices of modular bandwidth < D; CIRCD :=
⋃

N CIRCN
D(R). Recall that

CN ∈ CIRCN
2 (R) denotes the N × N cyclic permutation matrix from (17), and recall that we write P [ EX E ] ∈ R

for the coefficient to EX E = X j1
1 · · · X jL

L in an L-variate Laurent polynomial P ∈R[ EX, EX−1], E ∈ ZL .

a) For any P ∈RD [X, X−1] it holds P (CN ) ∈ CIRCN
D(R). More precisely

P (CN)I, J =
∑

n∈Z
P [X J−I+nN ] ∈ R,

and the sum is finite. The mapping R[X, X−1] ∋ P 7→ P (CN ) ∈ CIRCN (R) is a homomorphism of (not
necessarily commutative) algebras. For D ≤ N/2 and normed R, the restriction RD [X, X−1] ∋ P 7→
P (CN ) ∈ CIRCN

D(R) is an isometry of vector spaces with respect to the induced norms from Definitions 8c)
and 7a).

b) First specializing (a) toR := Rm×m and then generalizing from the univariate to the L-variate case, let us
fixm, L,N1, . . . ,NL ∈ N and consider the ring homomorphism

8m, EN : R
m×m[X1, X

−1
1 , . . . , XL, X

−1
L ] → CIRCN1 ⊗· · · ⊗ CIRCNL ⊗R

m×m

BEj · X
j1
1 · · · X jL

L 7→ C
j1
N1

⊗ · · · ⊗ C
jL
NL

⊗ BEj

where ⊗ denotes Kronecker/tensor product. Then
(
8m, EN (P )

)
I1, J1,...,IL , J L

=

=
∑

En∈ZL
P
[
X J1−I1+n1N1

1 , . . . X J L−IL+nLNL
L

]
∈ R

m×m (19)

and the sum is finite. Moreover, for Dℓ ≤ Nℓ/2, the restriction

8m, EN : R
m×m
ED

[ EX, EX−1] → CIRC
N1
D1

⊗· · · ⊗ CIRC
NL
D L

⊗R
m×m

is well-defined and isometric and bijective.

Proof of Lemma 20. a) One can see easily by induction that (C
j
N )I, J = 1 if J − I ≡ j (mod N), oth-

erwise 0. Therefore,

P (CN)I, J =
∑

j∈Z

(C
j
N)I, J P [X j]

=
∑

j 6≡ J−I (mod N)

0 · P [X j] +
∑

j≡ J−I (mod N)

1 · P [X j]

=
∑

n∈Z

P [X J−I+nN ].

And the sum is not only finite but has merely one term, since deg(P ) < D ≤ N/2. Note that all
powers of CN are permutation matrices; and if it holds −N/2 < I, J < N/2 and I 6= J , then C I

N

18
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and C
J
N do not share the positions of any 1’s. In this case each coefficient of P therefore appears

exactly once in each row (and in each column) of P (CN ); and for each entry of P (CN ), at most
one term of P contributes to it. Thus the operator norm of the matrix P (CN ) is the same as the
1-norm of any row (and any column) of it, which is equal to ‖P‖.

b) First note that 8m, EN is well-defined and multiplicative. Next, 8m, EN maps precisely all monomials

of the form X j1+n1N1
1 · · · X jL+nLNL

L to the same C
j1
N1

⊗ · · · ⊗ C
jL
NL

◦ Im . In particular, for −Nℓ/2 ≤
−Dℓ < jℓ <+Dℓ ≤ +Nℓ/2, this mapping from monomials to tensor products of powers of cyclic
permutation matrices is injective, and surjective; hence the claim follows by linearity. 2

For the complexity investigations in Theorem 24, consider the following stratification of (sequences
in) CIRCD1 ⊗· · · ⊗ CIRCDL ⊗Rm×m:

Definition 21 (Circulant bandwidth matrix sequence). For fixed m, L, J , D1, . . . , D L ∈ N , call a sequence
of real square matrices Ak of varying dimensions circulant bandwidth of format (m, L, J , ED) if there
exists

• a family Ck,ℓ, j of real circulant matrices of constant modular bandwidth < Dℓ and varying di-
mensions N = N(k, ℓ, j), where − J < j < J and 1 ≤ ℓ≤ L

• a family Bk, j of real square matrices of constant dimension m, (− J < j < J , 1 ≤ ℓ≤ L), such that

Ak =
∑ J−1

j=− J+1
Ck,1, j ⊗ Ck,2, j ⊗ · · · ⊗ Ck,L, j ⊗ Bk, j . (20)

Sequence Ak is circulant bandwidth if it is circulant bandwidth of format (m, L, J , ED) for some

m, L, J , ED . We say that Equation (20) is in normal form if all circulant matrices are suitable pow-

ers of cyclic permutation matrices CN (the ‘generators’) of suitable dimensions N; more formally, if it

holds

∀k, ℓ, j : Ck,ℓ, j = C
j
N(k,ℓ, j) .

Remark 23 below motivates circulant bandwidth matrices as difference schemes arising from a
rich class of PDEs; and the below Theorem 24 asserts that such matrices can be raised to exponential
powers in #P rather than PSPACE.

Lemma 22. Circulant bandwidth matrices are closed under binary addition, multiplication, and tensor prod-
uct; and can be brought to normal form:

a) The sum of two circulant bandwidth matrix sequences of formats (m, L, J , ED) and (m, L, J ′, ED), respec-
tively, is a circulant bandwidth matrix sequence of format (m, L, J + J ′, ED).

b) Componentwise multiplication of two circulant bandwidth matrix sequences of format (m, L, J , ED) and
of format (m, L, J ′, ED ′), respectively, yields a circulant bandwidth matrix sequence of format (m, L,2 J ·
J ′, ED + ED ′).

c) The tensor product of two circulant bandwidth matrix sequences of format (m, L, J , ED) and of format
(m′, L′, J ′, ED), respectively, yields a circulant bandwidth matrix sequence of format

(
m +m′, L + L′,2 J ·

J ′, ( ED, ED ′)
)
.

d) Any circulant bandwidth matrix sequence of format (m, L, J , ED) can be converted into one in normal form
of format (m, L, | ED|, ED).

Proof. a) Obvious.
b) The product Ck,ℓ, j · C ′

k,ℓ, j of two circulant matrices Ck,ℓ, j and C ′
k,ℓ, j is again circulant. If Ck,ℓ, j

has modular bandwidth < Dℓ and C ′
k,ℓ, j has modular bandwidth < D ′

ℓ , then Ck,ℓ, j · C ′
k,ℓ, j has

modular bandwidth < Dℓ + D ′
ℓ − 1. The product of two sums

∑ J−1
j=− J+1 and

∑ J ′−1
j′=− J ′+1 of 2 J − 1

and 2 J ′ − 1 terms, respectively, is a sum of 2 · (2 J J ′ − J − J ′)+ 1 ≤ 2 · (2 J J ′)− 1 terms.
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c) Similarly to (b).

d) Expand circulant Ck,ℓ, j of modular bandwidth < Dℓ as linear combination of C
−Dℓ+1
N(k,ℓ, j), . . . ,

C
Dℓ−1
N(k,ℓ, j) . 2

3.7. Powering circulant bandwidth matrices in #P

In difference schemes for PDEs, spatial discretization replaces continuous functions with sample
vectors u and operators with matrices An of dimension exponential in n (corresponding to grid
width h ∼= 1/2poly(n)). The latter are then to be raised to a power exponential in n (corresponding
to time steps τ ∼= 1/2poly(n)). According to Subsection 3.3, such powering has computational com-
plexity PSPACE in general, even for matrices of bounded powers. But many difference schemes are
circulant bandwidth in the sense of Definition 21:

Remark 23. Consider a system of evolutionary linear partial differential equations (1) and periodic
boundary conditions (6) on the d-dimensional unit cube � = [0;1)d mod E1, where B E ∈ Re×e are
constant coefficient matrices, i.e., they may not depend on Ex or t .

a) The partial differential operator ∂ℓ applied to f is naturally approximated up to error 1/2k on a
spatial grid (x j) j of width δ = 2−O(k) by a first-order finite difference like

(
f (x j + δ) − f (x j −

δ)
)
/δ. The latter amounts to a matrix of bandwidth 3 applied to the sample vector

(
f (x j)

)
j
.

b) Similarly, finite differences of higher (but constant) order accuracy to higher (but constant)

order- j derivatives ∂ j
ℓ both correspond to matrices of larger (but constant) bandwidth. And mixed

partial derivatives correspond to tensor products of such matrices.
c) Differential operators of bounded order with constant (with respect to time, but not necessarily

spatially) coefficients yield constant such matrices.
d) Differential operators with coefficients which depend neither on time nor on space, together with

periodic spatial boundary conditions, finally yield circulant such matrices.

Section 4.1 expands on this remark, and Section 5 collects some explicit examples. And the fol-
lowing Theorem 24 asserts that such difference schemes can be raised to exponential powers in #P

(instead of PSPACE).

Theorem 24. Let Ak have bounded powers and be of circulant modular bandwidth with terminology from
Definition 21. Furthermore suppose

• that the integer triple sequence N = N(k, ℓ, j) > 0 is computable in unary polynomial time (Defini-
tion 14c),

• that the real matrix triple sequence (k, ℓ, j) 7→ Ck,ℓ, j of dimension N(k, ℓ, j) is polynomial-time com-
putable (Definition 14a),

• and that the real matrix double sequence (k, j) 7→ Bk, j of dimensionm is polynomial-time computable.
• Finally consider a sequence of positive integer exponents M = M(k) computable in unary polynomial time.

Then the sequence AM(k)
k of real matrix powers is computable in #P.

Recall (remark after Definition 14) that N and M can grow up to exponentially in k.

Proof. Recall that in our non-uniform setting the task is to compute any desired individual among
the exponentially entries!

First translate the matrix Ak of Equation (20) into normal form according to Lemma 22d). Note

that expanding each Ck,ℓ, j individually as linear combination of C
−Dℓ+1
N(k,ℓ, j), . . . ,C

Dℓ−1
N(k,ℓ, j) incurs at most

| ED| = D1 + · · · + D L additional terms to then be re-collected into the coefficient matrices Bk, j ; and

| ED| is constant with respect to k.
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Next translate the normal form into a multivariate Laurent polynomial Pk according to the inverse
isometry from Lemma 20b).

Then raise Pk to the desired power M(k): within #P following Theorem 18.

And finally recover the desired coefficient of A
M(k)
k from the corresponding one in PM(k)

k according
to Lemma 20b). 2

Replacing Theorem 18 with Proposition 19, we obtain the following corollary which may be of
independent interest:

Corollary 25. If all circulant matrices Ck, j,ℓ in Equation (20) have modular bandwidth two, then the sequence

A
M(k)
k of matrix powers is computable in P.

Difference schemes of modular bandwidth two correspond to simple transport equations, which
admit explicit solutions anyway: see Subsection 4.2. Also, fast exponentiation AM of a difference
scheme A by itself is insufficient for the difference method approach as it remains to apply the inner
product with the initial condition in #P: see Proposition 16.

4. Complexity of PDEs

In this section we prove Theorem 4: the proofs of items a), c) are based on the difference scheme
approach and heavily rely on the techniques developed in Section 3; item d) is proved via the charac-
teristic method; the hardness result e) significantly uses complexity properties of integration (Fact 11).

4.1. Linear PDEs with non-/constant coefficients in PSPACE/#P

By Proposition 17, raising a difference scheme of exponential dimension to an exponential power
(=making that many time steps of the autonomous system) is feasible in PSPACE; and multiplying
the resulting matrix to the sample vector of the initial condition remains in PSPACE.

If the underlying difference scheme is circulant bandwidth (Definition 21), then it can be raised to an
exponential power within #P by Theorem 24; and multiplying the resulting matrix to the sample vector of the
initial condition remains in #P according to Proposition 16.

To finalize proofs of Claims (a) and (c) of Theorem 4, it remains to interpolate the grid function
computed in Section 3 and apply several well known estimates.

Proof of Theorem 4a, c. To compute the solution u at a fixed point (t, x) with the prescribed precision
2−n and estimate the bit-cost of the computation, consider the following computation steps.

1.) Choose the space and time grid steps, h and τ , in the following way:
• h is any binary-rational number of the form h = 2−N , where N = O(n), satisfying the Inequal-

ity (22) below;
• τ is any binary-rational number meeting the Courant inequality τ ≤ νh, where ν is the Courant

number guaranteeing convergence property of the considered difference scheme which can be
computed from the coefficients of the system (1).

2.) For a grid point (t, Ex) put l = t
τ (note that l ≤ M =

[
1
τ

]
=O(2n)) and calculate the matrix powers

and vector products A
M(n)
h(n) · ϕ(h(n)) . Note that we use matrix powering (Subsection 3.3) instead of

the step-by-step iterations commonly employed in connection with difference schemes (9).

3.) For non-grid points take (e.g.) a multilinear interpolation ũ(h) of u(h) , which can be computed

in polynomial time from the (constant number of) “neighbor” grid points. Due to well-known

properties of multilinear interpolations, the following inequalities hold:

sup
t,Ex

∣∣ũ(h)(t, Ex)
∣∣≤ C̃ sup

GτN

∣∣u(h)
∣∣; sup

t,Ex

∣∣u(t, Ex)− ũ|GτN (t, Ex)
∣∣≤ C̄ sup

t,Ex

∣∣∂ E2u(t, Ex)
∣∣ · h2, (21)

where C̃ and C̄ are absolute constants.
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Based on (21) and on the continuous dependence property, as well as on linearity of the interpolation

operator, infer

sup
t,Ex

∣∣u(t, Ex)− ũ(h)(t, Ex)
∣∣≤ sup

t,Ex

(∣∣u(t, Ex)− ũ |GτN (t, Ex)
∣∣+

∣∣ũ |GτN (t, Ex)− ũ(h)(t, Ex)
∣∣
)

≤ C̄C0||ϕ||C l(�̄)h
2 + C̃C · h ≤ 2−n.

Thus choosing a grid step h = 2−N such that

h ≤ Ch · 2−n, Ch = C̄C0||ϕ||C l(�̄) + C̃C, (22)

will guarantee the computed function ũ(h) approximate the solution u with the prescribed precision
2−n (here Ch depends only on the fixed polynomial time computable functions ϕ , B i and therefore is
a fixed constant). 2

Remark 26. Dating back to the Heat Equation, Fourier methods are nowadays a common tool in the
analysis of PDEs—although arguably less common in their numerical treatment. Calculating a Fourier
integral (over a compact domain) as transformation between spatial and frequency representation
amounts to algorithmic cost #P according to Fact 11c). This observation suggests an alternative ap-
proach to establish (variants of) Theorem 4c).

4.2. Symmetric hyperbolic PDEs with commuting coefficients are polynomial-time computable

Towards proving Theorem 4d), first consider the following scalar linear PDE with constant coeffi-

cients and its explicit solution

λ0ut =
∑

j
λ j∂ ju, u(Ex, t) = u0

(
t
∑

j
λ j + λ0

∑
j
x j
)

(23)

which is obviously polynomial-time computable, provided that λ0, λ1, . . . , λd ∈ R are.
Theorem 4d) considers vector systems of such PDEs, with constant symmetric mutually commuting

matrix coefficients B E . These hypotheses assert a simultaneous diagonalization, that is, a basis of joint
eigenvectors: which ‘decouples’ the system into e independent scalar equations (23). It remains to
prove that such a joint spectral decomposition can be computed in P: which is wrong in case (even a
single symmetric) matrix B E is given as input [66]. Fortunately, in agreement with Question 2, these
matrices are not part of the input but fixed polynomial-time computable. And for this case we have
and apply the following

Theorem 27. Fix symmetric and mutually commuting matrices B E = B∗
E of fixed dimension e ∈ N with fixed

real polynomial-time computable entries. Then a joint spectral decomposition B E = T⊺ ·D E ·T can be computed
in time polynomial in the output precision parameter n (and unspecified dependence on the dimension e as
well as on the ‘input’ matrix entries). Here D E is a diagonal matrix with the eigenvalues of B; and T is an
orthonormal matrix consisting of a joint basis of eigenvectors of all B E .

Proof. We first treat the case of one single symmetric matrix B E = B . By [48], the e-tuple of eigenval-
ues, repeated according to their multiplicities (i.e. the sought diagonal matrix D), can be approximated
up to absolute error 1/2n in time polynomial in n. Note that the (integer) multiplicities themselves
depend discontinuously on the entries of B and therefore cannot be computed from B [67, §3.5];
but, since the matrix is fixed, they can be hardcoded into the thus non-uniform computation. It then
remains to compute, for each eigenvalue λ with correct multiplicity k = k(λ), an orthonormal basis of
the k-dimensional kernel of B − λ · id [50].

Gaussian Elimination employs tests for in/equality during pivot search, which are ‘discouraged’ nu-
merically and actually known undecidable in the rigorous real realm. Instead, we shall also hardcode
the results of these tests: Recall that Gauss makes at most O(e3) steps, including tests. In order to

22
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obtain runtime polynomial in the variable precision n (instead of the constant dimension e), proceed
from Gauss real to Bareiss integer algorithm. More precisely operate on some e× e matrix B̃m,λ of in-

teger numerators such that dyadic B̃m,λ/2
m approximates B −λ · id ‘sufficiently’ well. Bareiss is known

to perform a number of integer arithmetic operations, and to incur bit-cost, at most polynomial in the

(constant dimension and in the variable) binary length of the largest integer entry. The latter is ≤m,

plus the (constant) magnitude of the largest real entry. In particular it suffices to take m polynomially

larger than n to guarantee output approximations up to error 1/2n .

Regarding the case of several symmetric commuting matrices B E , similarly hardcode the dimen-

sions k = k(Eλ) of their joint eigenspaces, namely to each eigenvector-tuple Eλ= λ E ; and for each such

tuple find a basis of the joint kernel of all square matrices B E −λ E as the kernel of a single rectangular

matrix comprised of the aforementioned B E − λ E ‘stacked’ on top of each other. 2

4.3. #P1 is necessary for the heat equation

In order to establish Theorem 4e), we record the following fact:

Fact 28.

a) Let u = u(t, Ex) solve the Heat Equation (5), (6), with the initial function ϕ ∈ C2([0,1]d). Then the solution
u(t0, Ex) is analytic in Ex for each fixed t0 > 0 [46, Chapter VI, 1.1, Theorem 1].

b) It is straightforward to check via integrating (5) by Ex over [0,1]d and taking (6) into account, that the
‘overall heat’

∫ 1
0 u(t, Ex)dEx does not depend on t .

Now consider initial condition ϕ := h ∈ C∞
0 ([0,1]

d) from the (multidimensional analog of)

Fact 11b): h is polynomial time computable and satisfies the boundary conditions (6), yet
∫

[0,1]d
h(Ex)dEx

is not polynomial-time computable unless FP1 =#P1 . Now suppose that the solution u = u(t, Ex) is

computable in P. According to Fact 28a), u(t0, Ex) is analytic for every t0 > 0. Thus
∫

[0,1]d
u(t0, Ex)dEx is

computable in P, see Fact 11e). However, this integral equals the initial
∫

[0,1]d
ϕ(Ex)dEx, see Fact 28b):

contradiction, unless FP1 =#P1 . This proves Theorem 4e). 2

4.4. PSPACE is generally necessary for evolutionary linear PDEs

This subsection establishes Claim (b) of Theorem 4 as counterpart to (a). It basically says that

non-constant coefficients may make linear PDEs PSPACE-hard, while the case of constant coefficients

can be solved in #P. The Method of Characteristics is a well-known approach of solving linear PDEs

by reduction to a family of non-linear ODEs. Here we take the opposite direction and reduce the

PSPACE-‘hard’ non-linear ODE from Fact 11g ′) to a linear PDE with non-constant coefficients of

the form (24) in a way that preserves polynomial-time computability. For notational convenience

we consider �̃ = [−2;2) mod 4 as 1D spatial domain with periodic boundary conditions instead of

�= [0;1) mod 1.

Proposition 29. There exists a polynomial-time computable function b : [0;1] × �̃→ R,

• of class C∞ in the first temporal argument and continuously differentiable (C1) in the second spatial
argument,

• satisfying periodic boundary conditions b(t,−2)≡ b(t,+2) and bx(t,−2)≡ bx(t,+2),

such that the classical solution v : [0;1] × �̃→ R
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• of the linear PDE initial value problem

vt(t, x) = b(t, x) · vx(t, x), v(0, x)= v0(x) (24)

• with initial condition

v0(x) := 2 − 2x2 for |x| ≤ 1,

v0(x) := −2 + 2(x− 2)2 = 2x2 − 8x+ 6 for + 1 ≤ x ≤ +2, (25)

v0(x) := −2 + 2(x+ 2)2 = 2x2 + 8x+ 6 for − 1 ≥ x ≥ −2

• subject to periodic boundary conditions v(t,−2)≡ v(t,+2) and vx(t,−2)≡ vx(t,+2)

exists but is not polynomial-time computable unless P = PSPACE.

Observe that v0 does satisfy the required boundary conditions. This initial condition is also Hölder-
unimodal in the sense of Lemma 30 below. Recall that the dependency of the 1D coefficient function
b = b(t, x) on time t can be turned into an autonomous linear system with coefficient b = b(z, x)
depending instead on a second ‘spatial’ coordinate z satisfying ż ≡ 1; so the latter form is PSPACE-
‘hard’ as well.

Before proceeding to the proof of Proposition 29, let us record the following tool about the com-
putational complexity of argmax for certain real functions on the unit circle.

Lemma 30 (Polytime argmax for quantitatively unimodal functions). Recall the unit circle �= [0;1) mod 1

and consider somewrapped half-open proper subinterval

[u1;u2) mod 1 := [u1;1) ∪ [0;u2) ⊆ �, 0 ≤ u2 < u1 ≤ 1 .

Equip [u1;u2) mod 1 with a total order by defining [0;u2)4 [u1;1) pointwise (while making 4 recover the
usual real order “≤” on [0;u2) and on [u1;1) individually). Furthermore equip [u1;u2) mod 1with themetric

d(u,u′) := u′ − u + 1 for u′ ∈ [0;u2) and u ∈ [u1;1)

while letting d(u,u′) := |u − u′| recover the usual real distance for u,u′ ∈ [0;u2) and for u,u′ ∈ [u1;1)
individually.

Call real-valued continuous f :�→ R unimodal if there exist distinct u−,u+ ∈� such that f is strictly
increasing on the (possibly wrapped) subinterval [u−;u+) mod 1 and strictly decreasing on the subinterval
[u+;u−) mod 1 (wrapped iff the previous subinterval is not wrapped).

Quantitatively, for ε > 0, call continuous f Hölder-unimodal if there exist u+,u− ∈ � and ε > 0 and
k ∈ N such that

∀u,u′ ∈ [u−;u+) mod 1, u 4 u′ : f (u′)− f (u) ≥ ε · d(u,u′)k

∀u,u′ ∈ [u+;u−) mod 1, u 4 u′ : f (u)− f (u′) ≥ ε · d(u,u′)k (26)

Now suppose that the function v : [0;1] × � → R is polynomial-time computable and that furthermore
v(t, ·) : � → R is Hölder-unimodal with parameters (ε,k) independent of t . Then u+ : [0;1] → � is
polynomial-time computable.

Our ad-hoc notion of Hölder-unimodality adapts and combines the well-known concepts of quan-
titative unicity [36, §16.1] and of unimodality to the unit circle. The initial condition (25) in Propo-
sition 29 is Hölder-unimodal with parameter (2,2). We emphasize that some such hypothesis is
necessary to avoid counterexamples like [59] and [34, §4.2]. For example unique argmax on a 2D
co-domain (i.e. lacking a total order) is not feasible in polynomial time unless P1 = UP1 ∩ coUP1 [34,
Theorem 4.32]. Note that computational versions of the Implicit Function Theorem require computability
of the first derivative [45] and are local, thus allowing to recover the solution only locally to assert PSPACE1-
‘hardness’, recall Fact 11g ′).
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Fig. 1. Illustration to (the proof of) Proposition 29. Note how quantitative continuity of u(0) 7→ u(t) yields quantitative uni-

modality of v(t, ·), as required in Lemma 30.

Fig. 2. Illustrating the adaptation of one trisection step in the proof of Lemma 30.

Proof of Lemma 30. We adapt the trisection method [19, bottom of p. 336] from simple root finding,
which uses two intermediate samples (instead of one) in order to avoid possible degenerate cases
involving undecidable real equality.

Fix t ∈ [0;1] and consider the restriction f := v(t, ·) : �→ R, Hölder-unimodal with parameters
(ε,k) by hypothesis. Note that f attains its maximum uniquely at the to-be-determined u+ ∈�, and
its minimum uniquely at the also unknown u− ∈ �. We shall approximate u+ up to any desired
absolute error 1/2n using the following iteration.

Suppose ua,uc are distinct polynomial-time computable points on the unit circle [0;1) mod 1 =
dom( f ) such that the proper and possibly wrapping subinterval [ua;uc) mod 1 is guaranteed to
contain u+ but not u− . Consider equidistant points ub,ux ∈ [ua;uc) mod 1, again polynomial-time
computable, and distinguish the possible order types of

(
f (ua), f (ub), f (ux), f (uc), f (ua)

)
.

In the case f (ua) > f (ub) > f (uc) depicted in the top left of Fig. 2, the assumption u+ ∈
[ub;uc) mod 1 requires either a (local) minimum or another local maximum to be attained in
[ua;ub) mod 1: either way a contradiction. Similarly for the case f (ua) < f (ub) < f (uc): by sym-
metry it suffices here and in the sequel to suppose f (ua) > f (uc). In the case f (ua) > f (uc) > f (ub)

depicted in the top right of Fig. 2, both assumptions u+ ∈ [ub;ub) mod 1 and u+ ∈ [ub;uc) mod 1
lead to a contradiction. The case f (ub) > f (ua) > f (uc) is split further into three subcases depicted
in the bottom of Fig. 2 depending on the relative location of f (ux).

Each case analysis yields a subinterval either of the form [ub;uc′ ) mod 1 or of the form
[ub′ ;uc) mod 1 which by contraposition is again guaranteed to contain u+ (and a fortiori still not
contain u−). Moreover the new subinterval has at most 2

3 times the length of the previous one:
arriving at an approximation to u+ up to absolute error 1/2n after O(n) iterations.

Refining this analysis in terms of bit (rather than unit) cost, polynomial-time computability of f
and of ua,ub asserts that any comparison “ f (ua) < f (ub)?” can be performed in time polynomial in

− log | f (ua)− f (ub)|. Here is where Hölder-unimodality (26) enters with parameters (ε,k), although
that does not directly guarantee | f (ua)− f (ub)| ≥O(ε) ·d(ua,ub)

k; see the top middle of Fig. 2 where
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f (ua) = f (ub). Instead consider, in addition to ua and ub , perturbed polynomial-time computable

points ua′ and ub′ ; and perform four comparisons in parallel:

f (ua) < f (ub)? f (ua′) < f (ub)? f (ua) < f (ub′)? f (ua′) < f (ub′)?

Now if the perturbation is chosen such as to satisfy d(ua,ua′),d(ub,ub′) ≥ δ · d(ua,ub)
k for some

constant δ, then Hölder-unimodality (26) does guarantee at least one of the comparisons to return
in time polynomial in − logd(ua,ub); similarly for uc,ux: resulting in an overall bit-cost polynomial
in n. 2

Proof of Proposition 29. Let us first recall the Method of Characteristics at the example of Equa-

tion (24). To this end consider some solution u = u(t) of the nonlinear ODE u̇ = −−−b(t,u). Then, for a

differentiable function v = v(t, x), the Chain Rule yields

d
dt v
(
t,u(t)

)
= vt

(
t,u(t)

)
+ vx

(
t,u(t)

)
· u̇(t)

= vt
(
t,u(t)

)
− vx

(
t,u(t)

)
· b
(
t,u(t)

)
= 0 . (27)

Hence v
(
t,u(t)

)
≡ v

(
0,u(0)

)
: v is constant along the trajectory u = u(t). Solving the nonlinear ODE

u̇ = −b(t,u) for all possible initial values u(0) thus implicitly yields the solution to the linear PDE (24)
as collection of level curves: since trajectories do not cross and continuously depend on the initial
value.

Here we conduct a reduction in the opposite direction: Intuitively, take the right-hand side f of
PSPACE-hard nonlinear ODE to initial value 0 from Fact 11g ′). We write u0 : [0;1] → [−1;1] for the
solution to said special initial value: u0(0)= 0. Then consider all possible initial value problems u̇ =
−b(t,u) for b := − f , that is, let u(0) vary. Next define v

(
t,u(t)

)
:≡ v

(
0,u(0)

)
and read Equation (27)

backwards to verify that said v indeed solves the linear PDE (24) with v
(
0,u0(0)

)
= 2. Finally employ

Lemma 30 to see that polynomial-time computability of said v implies polynomial-time computability
of the special solution u0 to Hölder-unimodal initial value u0(0)= 0 as peak contour line v

(
t,u0(t)

)
≡

2: contradicting Fact 11g ′).
However in order to make this intuitive reduction rigorous, these aspects require further attention:

i) The coefficient function b in PDE (24) must satisfy the periodic boundary condition.
ii) The solution to ODE u̇ = −b(t,u) must exist on the entire time interval [0;1] for every possible

initial value u(0), not only for the special case u(0)= 0 covered by Fact 11g ′ .
iii) The (only thus well-defined) solution v to PDE (24) must satisfy the hypothesis of Lemma 30 —

technically with �̃ instead of �.

Regarding (i), extend − f (t, ·) from [−1;1] to b(t, ·) : [−2;2] with b(t, x)≡ 0 for |x| ≥ 1. Note that

this extension preserves polynomial-time computability, and continuous differentiability C1 in x since

f (t,±1) ≡ 0 ≡ fx(t,±1) by virtue of Fact 11g ′). Moreover the PSPACE-hard special solution u0 to

u̇ = f (t,u) remains solution to u̇ = −b(t,u) at initial value 0. This also takes care of Property (ii):

although a solution u̇ = f (t,u) to initial value u(0) ∈ [−1;1] \ {0} could reach the boundary of

dom( f )= [−1;1], the extension being identically zero outside of [−1;1] prevents said solution from

leaving [−1;1]. To finally see that the hypothesis of Lemma 30 holds, continuous dependence of u(t)
on t and the initial value u(0) asserts continuity of v . Moreover recall that trajectories do not cross:

therefore v(t, ·) preserves the unimodality of the initial v(0, ·) : �̃→ R, qualitatively; see Fig. 1. Quan-

titatively, v(0, ·) is Hölder-unimodal with parameters (ε,k) = (2,2). This carries over to v(t, ·) also

being Hölder-unimodal, since f is Lipschitz-continuous by Fact 11g): |b(t, x1)− b(t, x2)| ≤ Z · |x1 − x2|
for some Z ∈ N independent of t ∈ [0;1]. Hence solutions u1 = u1(t) and u2 = u2(t) to different

initial values satisfy

|u̇1(t)− u̇2(t)| =
∣∣b
(
t,u1(t)

)
− b

(
t,u2(t)

)∣∣ ≤ Z · |u1(t)− u2(t)|

and thus
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|u1(t)− u2(t)| ≤ exp(Zt) · |u1(0)− u2(0)| ≤ exp(Z) · |u1(0)− u2(0)| .

To see the latter more formally, express |x| = max{+x,−x} and u̇(t)= limδց0

(
u(t + δ)− u(t)

)
/δ and

consider all combinations of cases u̇ > 0, u̇ < 0, u > 0, and u < 0 at t , or rather on some sufficiently

small neighborhood of t . Finally, by definition,

|v
(
t,u2(t)

)
− v

(
t,u1(t)

)
| = |v

(
0,u2(0)

)
− v

(
0,u1(0)

)
|

≥ ε · |u1(0)− u2(0)|
k ≥ ε/exp(Z) · |u1(t)− u2(t)|

k. 2

5. Examples

This section provides some illustrative examples for the main Theorem 4 and the techniques de-

veloped in Section 3.

5.1. Some PDE systems to which our theorems apply

Here we summarize several well known equations and systems, illustrating Theorem 4 a), c). We

emphasize that Hypotheses 3 (iii) about convergence of the difference scheme w.r.t. the maximum

norm might lead to strong smoothness assumptions, which are different for different examples.

Example 31. Many evolutionary linear PDEs admit difference schemes that satisfy the hypotheses of

Theorem 4 c), and thus can be computed in #P, including:

a) The Heat Equation (5) with periodic boundary conditions and a polynomial time computable

initial function, provided that u(t, Ex) ∈ C (1,4)([0, T ] × �̄): see [40, §2.11] or [20, p. 1168] for max-
imum norm difference scheme convergence, and e.g. [12] for well-posedness.

b) The Wave Equation (4) with periodic boundary conditions and polynomial time computable initial

functions. Indeed, the wave equation admits a maximum norm convergent difference scheme

under additional smoothness assumptions, see [41, Theorem 3.1] for the two-dimensional case,

given that u(t, x, y) ∈ C (4,5)([0, T ] × �̄). The continuous dependence condition (8) can be verified

combining the well-known continuous dependence w.r.t. L2-norms (which generalizes to W l
2 after

applying the L2 estimate to the differentiated equation), and Sobolev Embedding Theorem, see

e.g. [12, §5.6.3]: for ϕ ∈ C p+1(�) and p > d/2,

||u||C(�̄) ≤ ||u||W p
2 (�)

≤ C0||ϕ||W p
2 (�)

≤ C0||ϕ||C p(�),

where C0 does not depend on ϕ; thus ||u||C2(�̄) ≤ ||ϕ||C p+2(�) .

c) Note that the two-dimensional acoustics system





ρ0
∂u

∂t
+
∂p

∂x
= 0,

ρ0
∂v

∂t
+
∂p

∂ y
= 0,

∂p

∂t
+ ρ0c

2
0

(
∂u

∂x
+
∂v

∂ y

)
= 0

can be equivalently reduced to the two-dimensional wave equation (e.g. [13]); see also [14] for

other examples of symmetric hyperbolic systems (3) (with constant coefficients B j), which are

equivalent to higher-order wave equations.

Note that if periodic boundary conditions are replaced by others such that Hypotheses 3 holds, the

solution u in the examples a), b), c) above can be computed in PSPACE, according to Theorem 4 a).
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5.2. Circulant matrices of difference schemes and corresponding polynomials

To illustrate the methods of Section 3, we write out the difference scheme (9) matrices of the form
(20) and the corresponding polynomials (18) for the heat equation (5), (6) for d = 1,2,3.

For d = 1 the difference scheme/recurrence relation looks as: uk = uk +τa2
(
uk+1−2uk+uk−1

h2

)
, where

uk denotes the grid function value at a certain time step kτ , while uk+1 is its value at the next time

step (k + 1)τ . Thus, denoting λ= τa2

h2
, µ= 1− 2λ, we get

A
(1)
h =




µ λ λ

λ µ λ

. . .

λ λ µ


=µI + λC1 + λC−1,

where I is the identity matrix of a corresponding dimension;

C
1 =




0 1
. . .

1
1 0


 ; C

−1 =




0 1
1 0

. . .

1 0


 .

The associated Laurent polynomial is P (1)h (X)=µ+ λX + λX−1 .

For d = 2, A
(2)
h =

=




µ λ λ λ λ

λ µ λ λ λ

. . . . . . . . . . . .

λ λ µ λ λ

λ µ λ λ λ

λ λ µ λ λ

. . . . . . . . . . . .

λ λ λ µ λ

. . . . . . . . .

λ λ µ λ λ

λ λ λ µ λ

. . . . . . . . . . . .

λ λ λ λ µ




=

µI + λ



C1

. . .

C1


+ λ



C−1

. . .

C−1


+ λ




0 I

. . .
. . .

0 I

I 0


+ λ




0 I

I 0

. . .
. . .

I 0




=µ · I ⊗ I + λ · C1 ⊗ I + λ · C−1 ⊗ I + λ · I ⊗ C
1 + λ · I ⊗ C

−1 .

Its associated Laurent polynomial is

P (2)h (X, Y )=µ+ λX + λX−1 + λY + λY−1.
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Finally, for d = 3,

A
(3)
h =µ · I ⊗ I ⊗ I + λ · C ⊗ I ⊗ I + λ · C−1 ⊗ I ⊗ I + λ · I ⊗ C ⊗ I +

+ λ · I ⊗ C
−1 ⊗ I + λ · I ⊗ I ⊗ C + λ · I ⊗ I ⊗ C

−1,

P (3)h (X, Y , Z)=µ+ λX + λX−1 + λY + λY−1 + λZ + λZ−1.

6. Conclusion and perspective

Real Complexity Theory determines the computational cost intrinsic to numerical problems. Previ-
ous work has for example established that

• In/definite continuous maximization corresponds to NP and NP1 , respectively [34, Theo-
rems 3.7+3.16].

• In/definite Riemann integration corresponds to #P and #P1 , respectively [34, Theorems 5.32+5.33].
• Solving Lipschitz-continuous ODEs corresponds to PSPACE [22].
• 1D real function inversion corresponds to P [33].
• Poisson’s elliptic linear PDE can be solved in #P, and is hard for #P1 [30] (not #P, as claimed in

[30, §6]).
• Volterra’s Integral Equation can be solved in EXPSPACE, and EXPTIME is necessary [35].

The present work has extended these considerations to evolutionary (including hyperbolic and
parabolic linear systems of PDEs: The difference scheme approach for finding classical solutions to
linear systems of PDEs is, in a certain sense, PSPACE-“complete” (w.r.t. the output precision parameter
n, with the result computed up to guaranteed precision 2−n), since so is matrix powering for general
matrices of dimension exponential in n. For broad classes of systems and scalar PDEs with constant
coefficients and periodic boundary conditions we prove that these complexity bounds can be further
improved to #P, but not to P: since inner product is, in a certain sense, #P-“complete”.

6.1. Spectrum problem in real complexity

Determining the cardinality of some model (such as the Stone-Čech compactification of the inte-
gers) is a classical topic in Mathematics. Recall that, by Schröder-Bernstein, cardinality means maximal
with respect to surjective images/injective pre-images. In 1952, Heinrich Scholz asked conversely
which cardinalities arise as models of first-order sentences. This has become known as the famous
Spectrum Problem [11].

Similarly, the classical goal of Complexity Theory is to classify a decision problem under con-
sideration, that is, to show it complete (=maximal with respect to a suitable reduction) for some
complexity class. The textbook of Garey&Johnson can be regarded as conversely identifying many nat-
ural problems complete for NP. Various combinatorial (two-player) games have been demonstrated
PSPACE-complete [9]. An analogous direction of research is concerned with identifying natural prob-
lems complete for the discrete complexity class NPR , also known as Existential Theory of the Reals
[54,17,18,10]. By Schaefer’s Theorem [55], constraint satisfaction problems are either in P or NP-
complete.

As expanded on at the beginning of Section 6, Real Complexity characterizes discrete complexity
classes in terms of numerical problems. The (families of linear) PDEs considered so far seem to satisfy
a trichotomy similar to Schaefer’s: P in the analytic case, PSPACE in general, and #P for many popular
PDEs including Poisson and Heat. This suggests the following question:

Question 32 (Spectrum problem in real complexity).

a) Do other non/linear PDEs characterize discrete complexity classes beyond P/#P/PSPACE/EXPTIME?
b) Which discrete complexity classes arise from other ‘natural’ numerical problems?
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